Terpenoids from Roots of Chloranthus spicatus

by Zhi-Yong Xiao^a), Xia-Chang Wang^a), Gui-Ping Zhang^a), Zhong-Liang Huang^b), and Li-Hong Hu^{*a})

^a) Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 199 Guo Shou Jing Road, Shanghai 201203, P. R. China (phone: +86-21-50272221; fax: +86-21-50272221, e-mail: simmhulh@mail.shcnc.ac.cn)
 ^b) Dinghushan Station, South China Botanical Garden, Chinese Academy of Sciences, Dinghushan,

Zhaoqing 526070, Guangdong, P. R. China

Five new terpenoids, including four eudesmane-type sesquiterpenoids, 1-4, and one labdane-type diterpenoid, 6, together with ten known compounds, were isolated from the roots of *Chloranthus spicatus*. The structures and their relative configurations were mainly established by 1D- and 2D-NMR spectra, and MS experiments.

Introduction. - Chloranthus spicatus (THUNB.) MAKINO (Chloranthaceae) is a Chinese herbal medicine used in the treatment of numerous disorders such as ache, trauma, bone fracture, bleeding, and swellings [1]. In the course of searching for biologically active substances from traditional Chinese medicines, a series of sesquiterpenoids, dimeric sesquiterpenoids, and diterpenoids have been isolated from the genus *Chloranthus* [2-17]. The mono- and dimeric sesquiterpenoids were reported to show antifungal and tumor growth-inhibitory activities [2-6][13][16]. The present phytochemical investigation of the root extract of C. spicatus resulted in the isolation of four new eudesmane-type sesquiterpenoids, namely 4α -hydroxy- 5α , $8\beta(H)$ -eudesm-7(11)-en-8,12-olide (1), 4α -hydroxy- 5α , 8α (H)-eudesm-7(11)-en-8,12-olide (2), 4α , 8β dihydroxy-5 $\alpha(H)$ -eudesm-7(11)-en-8,12-olide (3), and 4 α -hydroxy-5 $\alpha(H)$ -8 β -methoxyeudesm-7(11)-en-8,12-olide (4), and one new labdane-type diterpenoid, $(12S^*,13E)$ -12-hydroxy-15-methoxylabda-8(17),13-dien-18-oic acid (5), together with ten known compounds 6-15 (Fig.). The new structures and their relative configurations were established mainly by 1D-, and 2D-NMR spectra, and MS experiments. The structures of the known compounds were confirmed by comparison with reported data.

Results and Discussion. – Compound **1** was obtained as a white, optically active powder. Its HR-ESI-MS indicated a molecular formula of $C_{15}H_{22}O_3$ from the peak at m/z 251.1651 ($[M + H]^+$, $C_{15}H_{23}O_3^+$, calc. 251.1647). The IR absorptions at 3448 and 1733 cm⁻¹ revealed the presence of OH and C=O groups, respectively. The ¹³C-NMR spectrum of **1** (*Table 1*) showed signals for three Me groups (δ (C) 22.5, 18.8, and 8.4), five CH₂ groups (δ (C) 50.8, 43.3, 40.3, 22.8, and 19.8), two CH groups (δ (C) 78.2 and 55.1), two quaternary C-atoms (δ (C) 72.1 and 35.8), one CO group (δ (C) 175.2), and a tetrasubstituted C=C bond (δ (C) 163.3 and 120.0). The NMR data of **1** were very similar to those of the known compound 1β , 4α -dihydroxy- 5α , 8β (*H*)-eudesm-7(11)-en-

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

8,12-olide, which was previously isolated from the same plant [18]. The difference between them emerged at C(1), showing up as CH_2 group in **1**, instead of the CH-OHgroup in the known compound. The structure of **1** was confirmed by the HMOC, HMBC, and ROESY spectra. In the HMBC spectrum, the long-range correlations from CH₂(2) (δ (H) 1.58–1.64 (m, 2 H)), CH₂(3) (δ (H) 1.34–1.38 and 1.84–1.88 (m, 2 H)), H–C(5) (δ (H) 1.29 (dd, J = 3.6, 13.5, 1 H)), and Me(15) (δ (H) 1.22 (s, 3 H)) to C(4) ($\delta(C)$ 72.1) led to the assignment of HO-C(4). The assignment of a C(7) = C(11)bond was supported by the presence of the corresponding correlations of $CH_2(6)$ to C(7) and C(11). The CO group (δ (C) 175.2) is located at C(12) due to the correlation between Me(13) (δ (H) 1.83 (br. s, 3 H)) to C(12). The linkage of C(8) and C(12) via an O-atom to form a five-membered γ -lactone was confirmed through the severe downfield chemical shift of H–C(8) at δ (H) 4.80 [18]. The relative configuration of **1** was determined on the basis of its ROESY spectrum. The observation of the ROESY correlations Me(14)/Me(15), Me(14)/H_{β}-C(6), Me(14)/H_{β}-C(8), Me(15)/H_{β}-C(6), and $H_{\beta}-C(8)/H_{\beta}-C(6)$ indicated that Me(14), Me(15), and H-C(8) are all in the axial position, and were assigned β -configuration as shown in the *Figure*. Compound **1** was, therefore, elucidated as 4α -hydroxy- 5α , 8β (H)-eudesm-7(11)-en-8,12-olide.

Position	1		2	
	$\delta(H)$	$\delta(C)^a)$	$\delta(H)$	$\delta(C)^a)$
$CH_2(1)$	1.15 - 1.19(m),	40.3 (t)	1.16 - 1.18(m),	42.7 (t)
	1.50 - 1.56 (m)		1.58 - 1.62 (m)	
$CH_{2}(2)$	1.58 - 1.64 (m)	19.8 (t)	1.59 - 1.66 (m)	20.6 (t)
$CH_{2}(3)$	1.34 - 1.38 (m),	43.3 (<i>t</i>)	1.36 - 1.40 (m),	43.5 (<i>t</i>)
	1.84 - 1.88 (m)		1.81 - 1.87 (m)	
C(4)		72.1(s)		72.6(s)
H-C(5)	$1.29 (dd, J = 3.6, 13.5, H_a)$	55.1 (d)	1.38 (overlapped, H_a)	48.3 (d)
$CH_{2}(6)$	$3.10 (dd, J = 3.6, 13.8, H_a),$	22.8(t)	2.86 (m, H_a) , 2.56 (m, H_β)	22.5(t)
2()	2.15 (br. $t, J = 13.5, H_{\beta}$)			
C(7)		163.3 (s)		162.8(s)
H-C(8)	4.80 (dd , $J = 6.3$, 10.8, H_{β})	78.2(d)	4.98 (m, H_a)	77.5(d)
$CH_2(9)$	1.37 (overlapped, H_a),	50.8(t)	1.42 (overlapped, H_a),	47.3 (<i>t</i>)
	2.19 (dd , $J = 6.3$, 11.7, H_{β})		2.20 (m , H _{β})	
C(10)		35.8 (s)		35.3 (s)
C(11)		120.0(s)		121.4 (s)
C(12)		175.2(s)		175.5 (s)
Me(13)	1.83 (br. s)	8.4(q)	1.83 (br. <i>s</i>)	8.6(q)
Me(14)	1.06 (s)	18.8(q)	0.76(s)	22.8(q)
Me(15)	1.22 (s)	22.5(q)	1.26 (s)	23.6 (q)
^a) Multiplic	cities from DEPT experiments.			

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**. At 300 and 75 MHz, resp., in CDCl₃; δ in ppm, J in Hz.

Compound **2** was obtained as a white, optically active powder. Its HR-ESI-MS indicated a molecular formula of $C_{15}H_{22}O_3$ from a peak at m/z 251.1650 ($[M + H]^+$, $C_{15}H_{23}O_3^+$; calc. 251.1647), which was same as that of compound **1**. The ¹H- and ¹³C-NMR spectra of **2** (*Table 1*) exhibited similar chemical shifts and the same

multiplicities of all C-atoms as in **1**, with minor differences, suggesting that compound **2** has an eudesmane-type backbone with the same substitution pattern as compound **1**. In the ROESY spectrum, the correlations Me(14)/Me(15), Me(14)/H_{β}-C(6), and Me(15)/H_{β}-C(6) indicated that Me(14) and Me(15) are in β -configuration, while H-C(8) is α -configurated. Compound **2** was thus elucidated as 4α -hydroxy- 5α , 8α (*H*)-eudesm-7(11)-en-8,12-olide.

Compound **3** was obtained as a white, optically active powder. Its HR-ESI-MS indicated a molecular formula of $C_{15}H_{22}O_4$ from a peak at m/z 289.1419 ([M + Na]⁺, for $C_{15}H_{22}NaO_4^+$; calc. 289.1416). The IR spectrum revealed the presence of OH and C=O groups, characterized by absorptions at 3561, 3378, and 1726 cm⁻¹. Comparison of the ¹H- and ¹³C-NMR data of **3** (*Table 2*) with those of **1** and **2**, and those of other eudesmane-type sesquiterpenoids established the presence of the same backbone, but with two OH groups in compound **3** [4] [12] [18]. The structure of **3** was confirmed by the HMQC, HMBC, and ROESY spectra. In the HMBC spectrum, the long-range correlations from HO–C(4) (δ (C) 22.4) led to the assignment of HO–C(4); the long-range correlations from HO–C(8) (δ (C) 56.6), and C(15) (δ (C) 54.3) led to the assignment of HO–C(8). The relative configuration of **3** was determined on the basis of its ROESY spectrum. The observation of ROESY correlations Me(14)/H_{β}–C(6), Me(14)/HO_{β}–C(8), HO_a–C(4)/H_a–C(5), HO_a–C(4)/H_a–C(5), HO_{<math>a}–C(4)/H_{<math>a}–C(6), and H_a–C(5)/H_{<math>a}–C(6)</sub></sub></sub></sub></sub></sub>

Table 2. ¹H- and ¹³C-NMR Data of **3** and **4**. At 300 and 75 MHz, resp., in (D₆)DMSO; δ in ppm, J in Hz.

Position	3		4	
	$\delta(\mathrm{H})$	$\delta(C)^a)$	$\delta(H)$	$\delta(C)^a)$
CH ₂ (1)	0.99 - 1.01 (m), 1.36 - 1.41 (m)	40.4 (<i>t</i>)	0.99 - 1.01 (m), 1.38 - 1.42 (m)	40.1 (<i>t</i>)
$CH_{2}(2)$	1.46 - 1.47 (m), 1.48 - 1.50 (m)	19.2 (t)	1.46 - 1.48 (m), 1.49 - 1.54 (m)	19.2 (t)
$CH_{2}(3)$	1.20 - 1.26 (m), 1.63 - 1.67 (m)	42.4(t)	1.24 - 1.28 (m), 1.63 - 1.67 (m)	42.3 (t)
C(4)		70.3(s)		70.2 (s)
H-C(5)	1.17 $(dd, J = 2.4, 12.9, H_a)$	56.6(d)	1.18 (br. $d, J = 12.9, H_a$)	56.5 (d)
$CH_2(6)$	2.93 $(dd, J = 2.4, 12.9, H_a),$	21.2(t)	2.97 (br. $d, J = 12.9, H_a$),	21.5(t)
	2.06 (br. $t, J = 12.9, H_{\beta}$)		1.99 (br. $t, J = 12.9, H_{\beta}$)	
C(7)		162.6(s)		160.6(s)
C(8)		103.9 (s)		106.2(s)
$CH_{2}(9)$	$1.28 (d, J = 12.9, H_a),$	54.3 (t)	1.30 $(d, J = 13.2, H_{a}),$	53.2(t)
	2.06 $(d, J = 12.9, H_{\beta})$		2.11 $(d, J = 13.2, H_{\beta})$	
C(10)		35.0 (s)		35.0 (s)
C(11)		119.5 (s)		122.6(s)
C(12)		171.8 (s)		171.1 (s)
Me(13)	1.70 (s)	8.0(q)	1.76 (s)	8.0(q)
Me(14)	1.06(s)	19.1(q)	1.01 (s)	18.9(q)
Me(15)	1.06(s)	22.4(q)	1.06(s)	22.5(q)
HO-C(4)	4.22 <i>(s)</i>		4.33 (s)	
HO-C(8)	6.99(s)			
MeO-C(8)			3.03 (s)	49.8 (q)
^a) Multiplicit	ies from DEPT experiments.			

revealed that Me(14), Me(15), and HO–C(8) are on the same face of the molecule, and were assigned β -configuration as shown in the *Figure*. Compound **3** was, therefore, elucidated as 4α , 8β -dihydroxy- 5α (*H*)-eudesm-7(11)-en-8,12-olide.

Compound **4** was obtained as a white, optically active powder. Its HR-ESI-MS indicated a molecular formula of $C_{16}H_{24}O_4$ from the signal at m/z 303.1576 ([M + Na]⁺, $C_{16}H_{24}NaO_4^+$; calc. 303.1572). Besides, there was a MeO signal in **4**, and the ¹H- and ¹³C-NMR spectra of **4** (*Table 2*) showed similar chemical shifts and the same multiplicities for most of the H- and C-atoms as for **3**, indicating that **4** is the *O*-methylated derivative of **3**. This was confirmed by HMBC experiments. Compound **4** was thus elucidated as 4α -hydroxy- $5\alpha(H)$ -8 β -methoxy-eudesm-7(11)-en-8,12-olide.

Compound **5** was obtained as colorless, optically active oil. Its HR-ESI-MS indicated a molecular formula of $C_{21}H_{34}O_4$ from the signal at m/z 373.2387 ([M + Na]⁺, $C_{21}H_{34}NaO_4^+$; calc. 373.2355). The ¹H-NMR spectrum of **5** (*Table 3*) showed signals for an allylic alcohol moiety, $R_2C=CHCH_2OH$, as characterized by the olefinic H-atom signal at $\delta(H)$ 5.45 (t, J = 6.9, 1 H), the secondary alcohol resonances appearing at $\delta(H)$ 3.98 (br. d, J = 6.9, 2 H), an exocyclic C=C bond at $\delta(H)$ 4.69 (s) and 4.81 (s), and three *singlet* Me groups at $\delta(H)$ 0.72, 1.13, and 1.65. By analysis of the ¹³C-NMR spectrum of **5** and comparison with the literature [19], **5** was assigned as (13*E*)-12-hydroxy-15-methoxylabda-8(17),13-dien-18-oic acid, which was further con-

Table 3. ¹H- and ¹³C-NMR Data of 5. At 400 and 100 MHz, resp., in CDCl₃; δ in ppm, J in Hz.

	$\delta(\mathrm{H})$	$\delta(C)^a)$	HMBC ^b)	NOE correlations from ROESY ^c)
$CH_{2}(1)$	1.03 (<i>m</i>), 1.76 (<i>m</i>)	38.0 (t)	2, 3, 5, 9, 10, 20	2, 3, 5, 9, 20
$CH_{2}(2)$	1.60 (<i>m</i>)	18.6 (<i>t</i>)	1, 3, 4, 10	1, 3, 19, 20
$CH_{2}(3)$	1.60 (<i>m</i>), 1.74 (<i>m</i>)	37.2 (t)	1, 2, 4, 5, 18, 19	1, 5, 19
C(4)		47.7 (s)		
H-C(5)	1.89 (dd, J = 3.3, 12.3)	49.7 (d)	1, 3, 4, 6, 7, 9, 10, 18, 19, 20	1, 3, 6, 7, 9
$CH_{2}(6)$	1.33 (<i>m</i>), 1.45 (<i>m</i>)	26.9 (t)	4, 5, 7, 8, 10	5, 7, 19, 20
$CH_{2}(7)$	1.96 (br. $d, J = 14.2$),	38.0 (t)	5, 6, 8, 9, 17	5, 6, 9, 17
	2.31 (br. <i>d</i> , <i>J</i> = 14.2)			
C(8)		148.2 (s)		
H-C(9)	1.52(m)	53.1 (d)	1, 5, 7, 8, 10, 11, 12, 17, 20	1, 5, 7, 11, 12, 17
C(10)		38.9 (s)		
$CH_{2}(11)$		28.2(t)		9, 12, 17, 20
H - C(12)	4.15(t, J = 6.9)	77.2(d)	9, 11, 13, 14, 16	9, 11, 14, 16, 17
C(13)		140.7(s)		
H - C(14)	5.45 $(t, J = 6.9)$	124.9 (d)	12, 13, 15, 16	12, 14, 21
$CH_{2}(15)$	3.98 (br. $d, J = 6.9$)	68.8(t)	13, 14, 21	14, 16, 21
Me(16)	1.65(s)	10.8(q)	12, 13, 14	12, 15
$CH_{2}(17)$	4.69 (s), 4.81 (s)	107.6(t)	7, 8, 9	7, 9, 11, 12
C(18)		184.8(s)		
Me(19)	1.13 (s)	16.5(q)	3, 4, 5, 18	2, 3, 6, 20
Me(20)	0.72(s)	15.0(q)	1, 5, 9, 10	1, 2, 6, 11, 19
Me(21)	3.35 (s)	58.3 (q)	15	14, 15

^a) Multiplicities from DEPT and HMBC experiments. ^b) The H-atom showing long-range correlation with indicated C-atoms. ^c) The H-atom showing correlation with indicated H-atom.

firmed by HMQC, HMBC, and ROESY experiments. The MeO group (δ (C) 58.3) was located at C(15) due to the long-range correlations from the H-atom signal at δ (H) 3.35 (*s*, Me(21)) to the C-atom signal at δ (C) 124.9 (C(14)) and 68.8 (C(15)) in the HMBC spectrum. The observation of ROESY correlations Me(19)/Me(20) and Me(20)/ CH₂(11) revealed that Me(19), Me(20), and CH₂(11) are on the same face of the molecule, and were assigned β -configuration as shown in the *Figure*. The signal correlations observed between H–C(12), and H–C(14), H–C(15), and Me(16) in the ROESY spectrum were indicative of a (13*E*) configuration for **5**. Compound **5**, exhibiting signals for CH₂(17) at δ (H) 4.69 and 4.81, is suggested to have (12*S*)configuration, which was confirmed in the literature [19][20]. Thus, the structure of compound **5** was determined as (12*S*, 13*E*)-12-hydroxy-15-methoxylabda-8(17),13dien-8-oic acid.

Furthermore, a known eudesmane-type sesquiterpene, shizukalidol (5) [2], four known labdane-type diterpenes, *i.e.*, labdan-8(17),12,14-trien-18-oic acid (7) [21], labdan-8(17),12,14-trien-18-oi (8) [21], (12E)-15-nor-14-oxolabda-8(17),12-diene-18-oic acid (9) [22], and 13β -hydroxylabda-8(17),14-dien-18-oic acid methyl ester (10) [23], and five known lindenane sesquiterpene dimers, *i.e.*, shizukaol B (11) [15], shizukaol C (12) [15], chlorahololide D (13) [8][24], shizukaol G (14) [25], and cycloshizukaol A (15) [14] were identified by comparison of their spectroscopic data with literature values.

Experimental Part

General. All solvents used were of anal. grade and purchased from the Shanghai Chemical Plant, Shanghai, P. R. China. Sephadex LH-20 (25–100 μ m) was purchased from Pharmacia. MCI gel CHP 20P (75–150 μ m) was purchased from Mitsubishi Chemical Ind., Tokyo, Japan. RP-18 (20–45 μ m) was purchased from Fuji Silysia Chemical Ltd. SiO₂ (200–300 mesh) for column chromatography (CC) was purchased from *Qingdao Marine Chemical Ltd.*, Qingdao, P. R. China. SiO₂ Plates (*GF-254*) for TLC were purchased from Yantai Huiyou Inc., Yantai, P. R. China. HPLC: Waters 2695 SeparationModule equipped with a Waters 2996 photodiode array detector and a Kromacil C18 column (4.6 × 150 mm, 0.5 μ m). Optical rotations: Perkin-Elmer 341 polarimeter. IR Spectra: Nicolet FTIR 750 spectrophotometer; in cm⁻¹. ¹H- and ¹³C- NMR, ¹H,¹H-COSY, DEPT, HMQC, HMBC, and ROESY spectra: at 300 MHz for ¹H, at 100 MHz for ¹³C, and at 600 MHz for ROESY with Bruker AMX-300/400/600 instruments in CDCl₃ or (D₆)DMSO soln. HR-ESI-MS: Micromass Q-Tof Global mass spectrometers. ESI-MS: Bruker Esquire 3000^{plus} spectrometer.

Plant Material. The roots of *C. spicatus* were collected from Dinhushan Mount, Zhaoqing City, Guangdong Province, P. R. China, in November 2007, and identified by Prof. *Zhong-Liang Huang* (South China Botanical Garden, Chinese Academy of Sciences). A voucher sample (20071130) was deposited with the South China Botanical Garden, Chinese Academy of Sciences, Zhaoqing, Guangdong, China.

Extraction and Isolation. Dried and powdered roots of *C. spicatus* (2.9 kg) were extracted with MeOH (3×101) at 70° and afforded 212 g of extract after evaporation under vacuum at 45°. The extract was suspended in H₂O and then partitioned with AcOEt to afford the AcOEt solubles (67 g). The AcOEt solubles were then subjected to a column of *MCI* gel eluted with 30, 50, 70, and 90% aq. MeOH, and 25 g of the 70% aq. MeOH fraction was separated on a SiO₂ column eluted with petroleum ether (PE)/AcOEt 9:1–3:7 to yield nine fractions, *Frs. I–IX. Fr. I* (5.8 g) was chromatographed on an *RP-18* column, using 80% aq. MeOH, to yield compound **7** (990 mg). *Fr. II* (2 g) was subjected to *RP-18* (80% aq. MeOH) column to yield compounds **8** (30 mg) and **10** (17 mg). *Fr. V* (1.6 g) was first subjected to a SiO₂ column with PE/acetone 9:1, then separated further on *RP-18* (68% aq. MeOH) column to yield compound **9** (70 mg). *Fr. VII* (0.7 g) was recrystallized from acetone to give **6** (138 mg). *Fr. VII* (3.7 g) was first subjected to a SiO₂ column with PE/acetone 8:2, then separated further on *RP-18* (45% aq. MeOH)

column to yield compounds 1 (26 mg), 2 (10 mg), 3 (45 mg), 4 (165 mg), 5 (16 mg), 13 (45 mg), and 15 (30 mg). *Fr. VIII* (2.5 g) was subjected to SiO₂ column with PE/acetone 7:3 to afford compounds 11 (300 mg), 12 (190 mg), and 14 (33 mg).

 4α -Hydroxy- 5α , 8β (H)-eudesm-7(11)-en-8,12-olide (=($4aR^*, 5R^*, 8aR^*, 9aS^*$)-4a,5,6,7,8,8a,9,9a-Oc-tahydro-5-hydroxy-3,5,8a-trimethylnaphtho[2,3-b]furan-2(4H)-one; 1). White powder. [a]²⁰_D = -34 (c = 0.3, MeOH). IR: 3448, 2923, 1733, 1677, 1382, 1326, 1101, 1029. ¹H- and ¹³C-NMR: Table 1. ESI-MS: 251.1 ([M + H]⁺). HR-ESI-MS: 251.1651 ([M + H]⁺, $C_{15}H_{23}O_3^+$; calc. 251.1647).

 4α -Hydroxy- 5α , 8α (H)-eudesm-7(11)-en-8,12-olide (=(4α R*,5R*, 8α R*, 9α R*)- 4α , $5,6,7,8,8\alpha$, $9,9\alpha$ -Oc-tahydro-5-hydroxy- $3,5,8\alpha$ -trimethylnaphtho[2,3-b]furan-2(4H)-one; **2**). White powder. [α]_D²⁰ = +76.3 (c = 0.35, MeOH). IR: 3430, 2931, 2869, 1735, 1679, 1448, 1386, 1330, 1105, 1027. ¹H- and ¹³C-NMR: Table 1. ESI-MS: 251.1 ([M + H]⁺). HR-ESI-MS: 251.1650 ([M + H]⁺, C₁₅H₂₃O⁺₃; calc. 251.1647).

 $4\alpha,8\beta$ -Dihydroxy- 5α (H)-eudesm-7(11)-en-8,12-olide (=($4aR^{*},5R^{*},8aR^{*},9aS^{*}$)-4a,5,6,7,8,8a,9,9a-Octahydro-5,9a-dihydroxy-3,5,8a-trimethylnaphtho[2,3-b]furan-2(4H)-one; **3**). White powder. [a]₂₀^D = -48 (c = 0.3, MeOH). IR: 3561, 3378, 2935, 1726, 1685, 1430, 1326, 1126. ¹H- and ¹³C-NMR: Table 2. ESI-MS: 289.2 ([M + Na]⁺). HR-ESI-MS: 289.1419 ([M + Na]⁺, C₁₅H₂₂NaO₄⁺; calc. 289.1416).

4α-Hydroxy-5α(H)-8β-methoxyeudesm-7(11)-en-8,12-olide (=(4aR*,5R*,8aR*,9aS*)-4a,5,6,7,8, 8a,9,9a-Octahydro-5-hydroxy-9a-methoxy-3,5,8a-trimethylnaphtho[2,3-b]furan-2(4H)-one; **4**). White powder. [α]_D²⁰ = -74 (c = 0.3, MeOH). IR: 3482, 2939, 2856, 1747, 1689, 1448, 1319, 1188, 1155, 1103. ¹H- and ¹³C-NMR: *Table 2*. ESI-MS: 583.3 ([2 M + Na]⁺). HR-ESI-MS: 303.1576 ([M + Na]⁺, C₁₆H₂₄NaO⁴₄; calc. 303.1572).

(12S,13E)-12-Hydroxy-15-methoxylabda-8(17),13-dien-18-oic acid (=(1R*,4aR*,5S*,8aR*)-5-[(2S,3E)-Decahydro-2-hydroxy-5-methoxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidenenaph-thalene-1-carboxylic acid; **5**). Colorless oil. [α]_D²⁰ = +14 (c = 0.2, CHCl₃). IR: 3426, 2921, 2850, 1699, 1639, 1461, 1384, 1168, 1078. ¹H- and ¹³C-NMR: *Table 3*. ESI-MS: 373.3 ([M + Na]⁺). HR-ESI-MS: 373.2387 ([M + Na]⁺, C₂₁H₃₄NaO⁴₄; calc. 373.2355).

REFERENCES

- [1] Editorial Committee of the Administration Bureau of Traditional Chinese Medicine, *Zhonghua Benchao* **1998**, *3*, 451.
- [2] B. Wu, S. He, Y.-J. Pan, Tetrahedron Lett. 2006, 48, 453.
- [3] B. Wu, S. He, X.-D. Wu, D.-K. Wu, Y.-J. Pan, Helv. Chim. Acta 2007, 90, 1586.
- [4] B. Wu, S. He, X.-D. Wu, D.-K. Wu, Y.-J. Pan, Planta Med. 2006, 72, 1334.
- [5] B. Wu, S. He, X.-D. Wu, D.-K. Wu, Y.-J. Pan, Chem. Biodiversity 2008, 5, 1298.
- [6] Y.-J. Xu, C.-P. Tang, C.-Q. Ke, J.-B. Zhang, H.-C. Weiss, E.-R. Gesing, Y. Ye, J. Nat. Prod. 2007, 70, 1987.
- [7] S.-P. Yang, Z.-B. Gao, F.-D. Wang, S.-G. Liao, H.-D. Chen, C.-R. Zhang, G.-Y. Hu, J.-M. Yue, Org. Lett. 2007, 9, 903.
- [8] S.-P. Yang, Z.-B. Gao, Y. Wu, G.-Y. Hu, J.-M. Yue, Tetrahedron 2008, 64, 2027.
- [9] S.-P. Yang, J.-M. Yue, *Tetrahedron Lett.* 2006, 47, 1129.
- [10] J. Kawabata, E. Fukushi, J. Mizutani, Phytochemistry 1998, 47, 231.
- [11] J. Kawabata, Y. Fukushi, S. Tahara, J. Mizutani, Phytochemistry 1990, 29, 2332.
- [12] B. Wu, H.-B. Qu, Y.-Y. Cheng, Helv. Chim. Acta 2008, 91, 725.
- [13] H. Kuang, Y.-G. Xia, B.-Y. Yang, Q.-H. Wang, S.-W. Lii, Chem. Biodiversity 2008, 5, 1736.
- [14] J. Kawabata, Y. Fukushi, J. Mizutani, Phytochemistry 1993, 32, 1347.
- [15] J. Kawabata, J. Mizutani, Phytochemistry 1992, 31, 1293.
- [16] B. Wu, J. Chen, H.-B. Qu, Y.-Y. Cheng, J. Nat. Prod. 2008, 71, 877.
- [17] X.-C. Wang, Y.-N. Zhang, L.-L. Wang, S.-P. Ma, J.-H. Liu, L.-H. Hu, J. Nat. Prod. 2008, 71, 674.
- [18] S.-P. Yang, C.-R. Zhang, H.-D. Chen, S.-G. Liao, J.-M. Yue, Chin. J. Chem. 2007, 25, 1892.
- [19] J.-M. Fang, Y.-C. Sou, Y.-H. Chiu, Y.-S. Cheng, Phytochemistry 1993, 34, 1581.
- [20] Y.-Z. Wang, C.-P. Tang, C.-Q. Ke, H.-C. Weiss, E.-R. Gesing, Y. Ye, Phytochemistry 2008, 69, 518.
- [21] J. Du, M.-L. Wang, R.-Y. Chen, D.-Q. Yu, Planta Med. 2001, 67, 542.

- [22] M.-Z. Sultan, Y.-M. Jeon, S.-S. Moon, Planta Med. 2008, 74, 449.
- [23] T. Hieda, Y. Mikami, Y. Obi, Agric. Biol. Chem. 1983, 47, 787.
 [24] C.-J. Li, D.-M. Zhang, Y.-M. Luo, S.-S. Yu, Y. Li, Y. Lu, Phytochemistry 2008, 69, 2867.
- [25] J. Kawabata, E. Fukushi, J. Mizutani, *Phytochemistry* 1995, 39, 121.

Received August 19, 2009